Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun Health ; 22: 100469, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35620644

RESUMO

Children who suffered traumatic brain injury (TBI) often experience acute and chronic pain, which is linked to a poor quality of life. Buprenorphine (BPN) is commonly used to treat moderate to severe persistent pain in children, however, the efficacy and safety profile of BPN in the pediatric population is still inconclusive. This study investigated the sex-specific effects of BPN on body weight, motor coordination and strength, expression of opioid receptors in the white matter astrocytes, and neuroinflammation in a mouse impact acceleration model of pediatric TBI. Male and female littermates were randomized on postnatal day 20-21(P20-21) into Sham, TBI + saline and TBI + BPN groups. Mice in the TBI + saline and TBI + BPN groups underwent TBI, while the Sham group underwent anesthesia without injury. BPN (0.075 mg/kg) was administered to the TBI + BPN mice at 30 min after injury, and then every 6-12 h for 2 days. Mice in the TBI + saline group received the same amount of saline injections. The impact of BPN on body weight, motor function, opioid receptor expression, and neuroinflammation was evaluated at 1-day (d), 3-d and 7-d post-injury. We found that 1) TBI induced significant weight loss in both males and females. BPN treatment improved weight loss at 3-d post-injury in females. 2) TBI significantly impaired motor coordination and strength. BPN improved motor coordination and strength in both males and females at 1-d and 3-d post-injury. 3) TBI significantly decreased exploration activity at 1-d post-injury in males, and at 7-d post-injury in females, while BPN improved the exploration activity in females. 4) TBI significantly increased mRNA expression of mu-opioid receptors (MOR) at 7-d post-injury in males, but decreased mRNA expression of MOR at 1-d post-injury in females. BPN normalized MOR mRNA expression at 1-d post-injury in females. 5) MOR expression in astrocytes at corpus callosum significantly increased at 7-d post-injury in male TBI group, but significantly decreased at 1-d post-injury in female TBI group. BPN normalized MOR expression in both males and females. 6) TBI significantly increased the mRNA expression of TNF-α, IL-1ß, IL-6 and iNOS. BPN decreased mRNA expression of iNOS, and increased mRNA expression of TGF-ß1. In conclusion, this study elucidates the sex specific effects of BPN during the acute phase after pediatric TBI, which provides the rationale to assess potential effects of BPN on chronic pathological progressions after pediatric TBI in both males and females.

2.
PLoS Genet ; 14(2): e1007235, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29462140

RESUMO

DNA damage observed during plant immune responses is reported to be an intrinsic component of plant immunity. However, other immune responses may suppress DNA damage to maintain host genome integrity. Here, we show that immunity-related DNA damage can be abrogated by preventing cell death triggered by Nucleotide-binding, Leucine-rich-repeat immune Receptors (NLRs). SNI1 (suppressor of npr1-1, inducible 1), a subunit of the structural maintenance of chromosome (SMC) 5/6 complex, was reported to be a negative regulator of systemic acquired resistance (SAR) and to be necessary for controlling DNA damage. We find that cell death and DNA damage in sni1 loss-of-function mutants are prevented by mutations in the NLR signaling component EDS1. Similar to sni1, elevated DNA damage is seen in other autoimmune mutants with cell death lesions, including camta3, pub13 and vad1, but not in dnd1, an autoimmune mutant with no visible cell death. We find that as in sni1, DNA damage in camta3 is EDS1-dependent, but that it is also NLR-dependent. Using the NLR RPM1 as a model, we also show that extensive DNA damage is observed when an NLR is directly triggered by effectors. We also find that the expression of DNA damage repair (DDR) genes in mutants with cell death lesions is down regulated, suggesting that degraded DNA that accumulates during cell death is a result of cellular dismantling and is not sensed as damaged DNA that calls for repair. Our observations also indicate that SNI1 is not directly involved in SAR or DNA damage accumulation.


Assuntos
Proteínas de Arabidopsis/agonistas , Dano ao DNA , Proteínas NLR/agonistas , Imunidade Vegetal/genética , Receptores Imunológicos/agonistas , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dano ao DNA/genética , Regulação da Expressão Gênica de Plantas , Proteínas NLR/genética , Proteínas NLR/metabolismo , Proteínas Nucleares/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Fatores de Transcrição/genética
3.
FEBS J ; 283(8): 1385-91, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26640229

RESUMO

Genetics studies the structure/function of genes via the characterization of their mutant phenotypes. In plants, a readily scorable mutant phenotype comprises macroscopic lesions symptomatic of disease in the absence of pathogens. Such mutants therefore exhibit autoimmune phenotypes. Many of these mutants are considered to be associated with immunity and the corresponding genes have been described as 'negative regulators' of immunity and/or cell death. Pathogens deliver effectors into host cells to increase infectivity by modifying or removing host proteins. Plants detect effectors via nucleotide-binding, leucine-rich repeat (NLR) immune receptors, which monitor host effector targets. In response to effector-mediated target tampering, NLR proteins potentiate immunity. The guard hypothesis proposes that NLRs 'guard' host 'guardees' targeted by pathogen effectors. An obvious corollary to this guard model is that forms of plant autoimmunity are a result of inappropriate NLR protein activation. In this review, we discuss what is known about some of the 'negative regulators' of immunity, and propose simple strategies that may help to characterize autoimmune mutants.


Assuntos
Autoimunidade/imunologia , Resistência à Doença/imunologia , Imunidade Inata/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/imunologia , Plantas/imunologia , Regulação da Expressão Gênica de Plantas , Receptores Imunológicos , Transdução de Sinais , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...